
Project

Introduction:

Write-Once-Memory (WOM) codes were first introduced in 1982 by Rivest and

Shamir. These codes make it possible to record information more than once on media

which only allows the irreversible change of 0 bits to 1.

A simple example presented by Rivest and Shamir is in the following table:

Data bits First Write Second Write

00 000 111

10 100 011

01 010 101

11 001 110

This code permits writing of two bits of information in three 1-bit cells twice. The

code usage is as follows: On the first write, choose for the data the appropriate code

word in the first column. On the second write, if the data is different than the data

written on the first write, choose the appropriate code word in the second column.

Otherwise, do nothing.

First it should be noted, that this scheme doesn't violate the restriction of not changing

1 to 0. Second, it is easy to see that the decoding is straightforward and each code

word corresponds to exactly one original data word.

This is only the basic idea which was later elaborated by many researchers to include

other numbers of repetitions on different numbers of cells.

Goal:

Show that by introduction of WOM codes to the Flash Transmission Layer (FTL),

the number of page erases performed by the physical memory, a key factor in the

longevity of flash memories, can be reduced significantly.

Outline:

A software was designed to simulate the structure and operation of a generic memory

– the logical layer, the FTL and the flash memory (the physical layer).

Definitions and notations:

LPN – the total logical page number in logical memory.

PPN – the total physical page number in flash memory.

PBN – the total physical block number in flash memory.

PPB – number of pages per physical block.

 – the ratio of logical pages to physical pages, i.e.
LPN

PPN
 .

 – the number of pages to which a logical page will be mapped on a second write.

Flash memory

1. The Flash memory can be written in units of a page, or half a page.

2. Page rewriting is limited to changing zeroes to ones (The introduction of

WOM codes utilizes this feature).

3. Full rewrite is possible only after deletion of a full block.

FTL:

The data structure:

Consists of a mapping table and a block table.

The mapping table: LPN entries, an entry for each logical page. Each entry holds:

Status: status of the logical page, which can be free or used.

Physical pages: In case the page is used, the table holds the numbers of the physical

pages the logical page was mapped to. Each logical page can be mapped to more than

one physical page as described below.

The block table: PBN entries, an entry for each physical block. Each entry holds:

Write Phase: first write or second write as described below.

Erase count: the number of times the block was erased.

Valid1: the number of valid physical pages in the block written as 1:1, i.e. one logical

page mapped to one physical page.

ValidBeta: the number of valid physical pages in the block written as 1:  , i.e., pages

written to the block on second write with  physical pages corresponding to one

logical page.

Page table: PPB entries, one for each physical page in the block. Each entry holds:

Status: VALID - if physical page is used and a logical page is mapped to it.

OBSOLETE – if physical page is used but a logical page is no longer mapped

to it. FREE – free physical page.

LogicalPage: in case the physical page is VALID, the corresponding logical

page.

nthPhysical: in case the corresponding logical page is VALID and mapped to

more than one physical page, a value n denotes the current physical page was

the nth physical page the logical page was mapped to.

The control case:

The basic sector (page) mapping algorithm was used. The algorithm writes data to the

physical memory as sequentially as possible by keeping track of the next free page in

physical memory.

A write command is executed as follows: the page is written to the next free physical

page in memory. If no such page exists, (i.e. all pages are either VALID or

OBSOLETE), FTL finds a block with the largest number of OBSOLETE pages. Then

it erases the block and writes the valid data back to it sequentially from the beginning

of the block. Then the obtained free pages are used sequentially.

This case will be denoted by 1  .

Flash usage with rewrite:

Rewrite defined: clever usage of the ability to change zeroes to ones in the flash

memory without erasing the block, allows limited rewrite. Introduction of WOM

codes allows to rewrite a physical page but with the price that on a second write a

logical page will be mapped to  pages, with 1  .

Two alternatives were considered for a second write in a block:

1. All valid pages in the block have to be rewritten to  pages and the resulting

free space can be used for writing of each logical page to  pages. This

option is denoted by 0  .

2. Valid pages can be left intact and the obsolete pages in the block can be used

for writing of each logical page to  pages. This alternative is denoted by

1  .

The formulas for calculation of usable pages in a block on the next write:

 0  1 

End of 1
st
 write 1PPB Valid 



  
 
 

1PPB Valid



 
 
 

End of 2
nd

 write ValidBeta
PPB


 1

ValidBeta
PPB Valid


 

Whereas in the control case the choice of the block to be cleaned when physical

memory is full, is straightforward, for 1  this choice is more complex.

Several algorithms for choosing the block to be cleaned upon filling of physical

memory were tested for various values of , ,   .

The naïve algorithm: while there is a block available for 2
nd

 write, choose among

those the one with the maximum number of usable pages. If no blocks are available

for 2
nd

 write, choose from the blocks available for 1
st
 write the one with maximal

number of usable pages. This algorithm yielded poor results in the simulation,

showing only minor erase savings compared with the control case.

The greedy algorithm: each time choose the block with the highest number of usable

pages on the next write. This algorithm tested poorly.

The naïve with threshold algorithm: variation of the naïve algorithm. While there

are blocks available for 2
nd

 write with usable pages on the next write above a certain

threshold, choose the one with the maximal usable pages. Otherwise, choose among

the blocks available for 1
st
 write, the one with maximal number of usable pages. Trial

and error with the threshold value, reached the optimal erase values achieved in the

testing, but for different values of , ,   the optimal threshold value was different

without a visible pattern.

The minimum valid logical pages algorithm: choose the block with the minimum

number of logical pages mapped to it. Testing revealed this as the best algorithm. For

0  no algorithm gave better results. For 1  this algorithm yielded results very

close to the optimal testing results. The minimum valid logical pages algorithm with

factor further improved the results to the optimal ones.

The minimum valid logical pages algorithm with factor: Let 1b be the block with

the minimum number of valid logical pages mapped to it among the pages at the end

of 1
st
 right and let 1v be its number of valid logical pages. Let 2b be the block with the

minimum number of valid logical pages mapped to it among the pages at the end of

2
nd

 right and let 2v be its number of valid logical pages. Finally, let f be a number.

Now, the algorithm is: if 1 2v fv choose 1b . Otherwise, choose 2b . Clearly, for 1f 

this is the same as the previous algorithm. It should be noted, that in the case 0 

different values of f were tested and the global optimal results were achieved for

1f  . In the case 1  , global optimal results were achieved for 1f  , as we be

shown below.

The Simulation:

The following configuration was used for the simulation:

Page size: 2048 B

Pages per block: 64

Physical block number: 1024

Logical block number: α * Physical block number

Number of written pages: n.

With different values for α,β,γ and n.

The simulation was ran by writing n random content pages to the logical memory and

counting the total number of erases performed. Each page was written individually to

a randomly chosen logical page. It should be noted, that this isn't a "real world"

scenario for a disk workload, were data is mainly written in large chunks, but rather a

worst case scenario and therefore the obtained results should be interpreted as upper

bounds on the quantities measured.

Results and analysis:

The control case – β=1

As found in other studies, a linear correspondence between the number of erases and

the number of pages written, was found. If we define ' to be the average occupancy

of the block chosen for cleaning, than the formula presented by Jai Menon

1 '

1
ln

'









 
 
 

 was confirmed by the simulation results.

The greedy algorithm

As mentioned above this algorithm achieved only negligible improvements compared

with the control case. For example, in the case α=0.5, β=2, γ=0 an average

improvement of only 0.05% was achieved.

0

100000

200000

300000

400000

500000

600000

700000

0 2000000 4000000 6000000 8000000 10000000

N
u

m
b

e
r

o
f

Er
as

e
s

Number of pages written

β=1

α=0.5

α=0.625

α=0.75

α=0.875

The naïve algorithm with threshold

As mentioned above, only minor improvements were achieved by the basic algorithm.

Addition of a threshold and tweaking it, yielded optimal results.

Here are sample results for β=2:

0

100000

200000

300000

400000

500000

600000

700000

0 5 10 15 20 25 30

N
o

 o
f

Er
as

e
s

Threshold

Naive with Threshold β=2

α=0.5,γ=0

α=0.5,γ=1

α=0.625,γ=0

α=0.625,γ=1

α=0.75,γ=0

α=0.75,γ=1

α=0.875,γ=0

α=0.875,γ=1

The minimum valid logical pages algorithm (with factor):

As mentioned above, the basic algorithm achieved global optimal results for γ=0. For

γ=1, the results obtained by the basic algorithm were very close to the global optimal.

Further tweaking with a factor, achieved the global optimum.

Here are the test results for different α's:

α=0.5 β=1 β=2 β=2.5 β=3

 γ=0 γ=1 γ=0 γ=1 γ=0 γ=1

1000000 18025 14790 12894 16445 14049 17224 14801

2000000 37376 30777 26838 34180 29261 35752 30783

3000000 56712 46782 40806 51912 44500 54311 46792

4000000 76091 62764 54809 69668 59716 72857 62762

5000000 95457 78758 68750 87395 74923 91400 78749

6000000 114795 94759 82717 105141 90127 109927 94745

7000000 134153 110762 96688 122842 105341 128500 110701

8000000 153513 126747 110671 140621 120560 147045 126696

9000000 172874 142740 124665 158317 135777 165586 142702

10000000 192204 158721 138588 176054 151004 184164 158686

% Save 17.53 28.02 8.47 21.57 4.26 17.53

0

50000

100000

150000

200000

250000

0 2000000 4000000 6000000 8000000 10000000

N
u

m
b

e
r

o
f

Er
as

e
s

Number of Written Pages

α=0.5

β=1

β=2 γ=0

β=2 γ=1

β=2.5 γ=0

β=2.5 γ=1

β=3 γ=0

β=3 γ=1

α=0.625 β=1 β=2 β=2.5 β=3

 γ=0 γ=1 γ=0 γ=1 γ=0 γ=1

1000000 22059 20622 16213 21928 17694 22061 18505

2000000 45996 43146 33911 45704 36970 45983 38622

3000000 69912 65595 51600 69552 56230 69899 58712

4000000 93825 88144 69281 93367 75520 93838 78835

5000000 117731 110649 86958 117125 94819 117778 98949

6000000 141631 133131 104676 140953 114071 141647 119033

7000000 165534 155614 122338 164739 133337 165540 139169

8000000 189450 178068 140094 188553 152632 189465 159288

9000000 213332 200538 157751 212337 171844 213407 179362

10000000 237277 223076 175442 236147 191192 237241 199521

% save 6.09 26.16 0.51 19.52 0.00 15.97

0

50000

100000

150000

200000

250000

0 2000000 4000000 6000000 8000000 10000000

N
u

m
b

e
r

o
f

Er
as

e
s

Number of Written Pages

α=0.625

β=1

β=2 γ=0

β=2 γ=1

β=2.5 γ=0

β=2.5 γ=1

β=3 γ=0

β=3 γ=1

α=0.75 β=1 β=2 β=2.5 β=3

 γ=0 γ=1 γ=0 γ=1 γ=0 γ=1

1000000 30331 30267 22722 30302 24775 30316 26081

2000000 63782 63705 47825 63742 52136 63790 54960

3000000 97209 97157 72943 97161 79532 97241 83841

4000000 130721 130665 98074 130630 106941 130672 112724

5000000 164098 164069 123223 164145 134253 164079 141568

6000000 197567 197644 148368 197472 161701 197599 170411

7000000 230992 231084 173462 230980 189067 231018 199328

8000000 264368 264433 198592 264359 216477 264460 228191

9000000 297862 297888 223669 297789 243872 297884 257079

10000000 331390 331343 248865 331263 271395 331285 285953

% save 0.03 24.95 0.04 18.18 0.00 13.76

0

50000

100000

150000

200000

250000

300000

350000

0 2000000 4000000 6000000 8000000 10000000

N
u

m
b

e
r

o
f

Er
as

e
s

Number of Written Pages

α=0.75

β=1

β=2 γ=0

β=2 γ=1

β=2.5 γ=0

β=2.5 γ=1

β=3 γ=0

β=3 γ=1

α=0.875 β=1 β=2 β=2.5 β=3

 γ=0 γ=1 γ=0 γ=1 γ=0 γ=1

1000000 53757 53746 41002 53722 45186 53788 47414

2000000 115539 115523 88273 115565 97374 115520 102310

3000000 177304 177308 135371 177083 149574 177218 156984

4000000 238878 238846 182553 238851 201674 239172 211824

5000000 300838 300551 229632 300435 253888 300744 266435

6000000 362588 362387 276804 362299 306141 362329 321355

7000000 424407 424110 323806 424084 358265 424109 376102

8000000 485934 486016 371070 485690 410406 485844 430882

9000000 547765 547787 418216 547541 462581 547834 485655

10000000 609749 609433 465458 609264 514884 609410 540527

% save 0.03 23.65 0.06 15.63 0.01 11.42

0

100000

200000

300000

400000

500000

600000

700000

0 2000000 4000000 6000000 8000000 10000000

N
u

m
b

e
r

o
f

Er
as

e
s

Number of Written Pages

α=0.875

β=1

β=2 γ=0

β=2 γ=1

β=2.5 γ=0

β=2.5 γ=1

β=3 γ=0

β=3 γ=1

Finally, the results of this algorithm with a factor for β=2 and different values of α,γ:

100000

200000

300000

400000

500000

600000

700000

0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.00

N
u

m
b

e
r

o
f

Er
as

e
s

Factor

β=2

α=0.5 γ=0

α=0.5 γ=1

α=0.625 γ=0

α=0.625 γ=1

α=0.75 γ=0

α=0.75 γ=1

α=0.875 γ=0

α=0.875 γ=1

