Project

Introduction:

Write-Once-Memory (WOM) codes were first introduced in 1982 by Rivest and
Shamir. These codes make it possible to record information more than once on media
which only allows the irreversible change of 0 bits to 1.

A simple example presented by Rivest and Shamir is in the following table:

Data bits First Write Second Write
00 000 111
10 100 011
01 010 101
11 001 110

This code permits writing of two bits of information in three 1-bit cells twice. The
code usage is as follows: On the first write, choose for the data the appropriate code
word in the first column. On the second write, if the data is different than the data
written on the first write, choose the appropriate code word in the second column.
Otherwise, do nothing.

First it should be noted, that this scheme doesn't violate the restriction of not changing
1 to 0. Second, it is easy to see that the decoding is straightforward and each code
word corresponds to exactly one original data word.

This is only the basic idea which was later elaborated by many researchers to include
other numbers of repetitions on different numbers of cells.

Goal:

Show that by introduction of WOM codes to the Flash Transmission Layer (FTL),
the number of page erases performed by the physical memory, a key factor in the
longevity of flash memories, can be reduced significantly.

Outline:

A software was designed to simulate the structure and operation of a generic memory
— the logical layer, the FTL and the flash memory (the physical layer).

Definitions and notations:

LPN — the total logical page number in logical memory.
PPN — the total physical page number in flash memory.
PBN — the total physical block number in flash memory.

PPB — number of pages per physical block.

o — the ratio of logical pages to physical pages, i.e. % .

S — the number of pages to which a logical page will be mapped on a second write.

Flash memory

1. The Flash memory can be written in units of a page, or half a page.

2. Page rewriting is limited to changing zeroes to ones (The introduction of
WOM codes utilizes this feature).

3. Full rewrite is possible only after deletion of a full block.

FTL:

The data structure:

Consists of a mapping table and a block table.

The mapping table: LPN entries, an entry for each logical page. Each entry holds:
Status: status of the logical page, which can be free or used.

Physical pages: In case the page is used, the table holds the numbers of the physical
pages the logical page was mapped to. Each logical page can be mapped to more than
one physical page as described below.

The block table: PBN entries, an entry for each physical block. Each entry holds:
Write Phase: first write or second write as described below.
Erase count: the number of times the block was erased.

Validl: the number of valid physical pages in the block written as 1:1, i.e. one logical
page mapped to one physical page.

ValidBeta: the number of valid physical pages in the block written as 1: £, i.e., pages
written to the block on second write with £ physical pages corresponding to one
logical page.

Page table: PPB entries, one for each physical page in the block. Each entry holds:

Status: VALID - if physical page is used and a logical page is mapped to it.
OBSOLETE - if physical page is used but a logical page is no longer mapped
to it. FREE — free physical page.

LogicalPage: in case the physical page is VALID, the corresponding logical
page.
nthPhysical: in case the corresponding logical page is VALID and mapped to

more than one physical page, a value n denotes the current physical page was
the nth physical page the logical page was mapped to.

The control case:

The basic sector (page) mapping algorithm was used. The algorithm writes data to the
physical memory as sequentially as possible by keeping track of the next free page in
physical memory.

A write command is executed as follows: the page is written to the next free physical
page in memory. If no such page exists, (i.e. all pages are either VALID or
OBSOLETE), FTL finds a block with the largest number of OBSOLETE pages. Then
it erases the block and writes the valid data back to it sequentially from the beginning
of the block. Then the obtained free pages are used sequentially.

This case will be denoted by g =1.

Flash usage with rewrite:

Rewrite defined: clever usage of the ability to change zeroes to ones in the flash
memory without erasing the block, allows limited rewrite. Introduction of WOM
codes allows to rewrite a physical page but with the price that on a second write a
logical page will be mapped to § pages, with g >1.

Two alternatives were considered for a second write in a block:

1. All valid pages in the block have to be rewritten to £ pages and the resulting
free space can be used for writing of each logical page to £ pages. This
option is denoted by y =0.

2. Valid pages can be left intact and the obsolete pages in the block can be used
for writing of each logical page to £ pages. This alternative is denoted by

y=1.

The formulas for calculation of usable pages in a block on the next write:

y=0 y=1
End of 1% write LPPB—VaHdL[?} {PPB—VaHd%J
B B
End of 2" write PPR _VaIidﬂBeta PR _Va"dl_VaIidBeta

Whereas in the control case the choice of the block to be cleaned when physical
memory is full, is straightforward, for £ >1 this choice is more complex.

Several algorithms for choosing the block to be cleaned upon filling of physical
memory were tested for various values of «, S,y .

The naive algorithm: while there is a block available for 2" write, choose among
those the one with the maximum number of usable pages. If no blocks are available
for 2" write, choose from the blocks available for 1% write the one with maximal
number of usable pages. This algorithm vyielded poor results in the simulation,
showing only minor erase savings compared with the control case.

The greedy algorithm: each time choose the block with the highest number of usable
pages on the next write. This algorithm tested poorly.

The naive with threshold algorithm: variation of the naive algorithm. While there
are blocks available for 2" write with usable pages on the next write above a certain
threshold, choose the one with the maximal usable pages. Otherwise, choose among
the blocks available for 1% write, the one with maximal number of usable pages. Trial
and error with the threshold value, reached the optimal erase values achieved in the
testing, but for different values of «, 5,y the optimal threshold value was different

without a visible pattern.

The minimum valid logical pages algorithm: choose the block with the minimum
number of logical pages mapped to it. Testing revealed this as the best algorithm. For
y =0 no algorithm gave better results. For =1 this algorithm yielded results very

close to the optimal testing results. The minimum valid logical pages algorithm with
factor further improved the results to the optimal ones.

The minimum valid logical pages algorithm with factor: Let b, be the block with
the minimum number of valid logical pages mapped to it among the pages at the end
of 1% right and let v, be its number of valid logical pages. Let b, be the block with the
minimum number of valid logical pages mapped to it among the pages at the end of
2" right and let v, be its number of valid logical pages. Finally, let f be a number.
Now, the algorithm is: if v, < fv, choose b,. Otherwise, choose b,. Clearly, for f =1
this is the same as the previous algorithm. It should be noted, that in the case y =0
different values of f were tested and the global optimal results were achieved for
f =1. In the case y =1, global optimal results were achieved for f >1, as we be
shown below.

The Simulation:

The following configuration was used for the simulation:
Page size: 2048 B

Pages per block: 64

Physical block number: 1024

Logical block number: a * Physical block number
Number of written pages: n.

With different values for a,f,y and n.

The simulation was ran by writing n random content pages to the logical memory and
counting the total number of erases performed. Each page was written individually to
a randomly chosen logical page. It should be noted, that this isn't a "real world"
scenario for a disk workload, were data is mainly written in large chunks, but rather a
worst case scenario and therefore the obtained results should be interpreted as upper
bounds on the quantities measured.

Results and analysis:

The control case — B=1

As found in other studies, a linear correspondence between the number of erases and
the number of pages written, was found. If we define «' to be the average occupancy
of the block chosen for cleaning, than the formula presented by Jai Menon

1-a was confirmed by the simulation results.

o=——
1
In| —
(94
700000
600000 /,
500000
w
g /
o
i 400000 / a=0.5
o
é 300000 a=0.625
S a=0.75
— / /
200000 / a=0.875
100000 7
0
0 2000000 4000000 6000000 8000000 10000000
Number of pages written
The greedy algorithm

As mentioned above this algorithm achieved only negligible improvements compared
with the control case. For example, in the case a=0.5, =2, y=0 an average
improvement of only 0.05% was achieved.

The naive algorithm with threshold

As mentioned above, only minor improvements were achieved by the basic algorithm.
Addition of a threshold and tweaking it, yielded optimal results.

Here are sample results for B=2:

Naive with Threshold B=2

700000
500000 AN =0.5,y=0
“ \/ a=0.5,y=1
[}
E 400000 a=0.625,y=0
w
Y
5] a=0.625,y=1
S 300000 [> 7 Y
2 ; / , a=0.75,y=0
200000 w a=0.75,y=1
100000 a=0.875,y=0
a=0.875,y=1
0
0 5 10 15 20 25 30

Threshold

The minimum valid logical pages algorithm (with factor):

As mentioned above, the basic algorithm achieved global optimal results for y=0. For
y=1, the results obtained by the basic algorithm were very close to the global optimal.
Further tweaking with a factor, achieved the global optimum.

Here are the test results for different a's:

a=0.5 B=1 B=2 B=2.5 B=3
y=0 y=1 y=0 y=1 y=0 y=1

1000000 | 18025 | 14790 | 12894 | 16445 | 14049 | 17224 | 14801
2000000 | 37376 | 30777 | 26838 | 34180 | 29261 | 35752 | 30783
3000000 | 56712 | 46782 | 40806 | 51912 | 44500 | 54311 | 46792
4000000 | 76091 | 62764 | 54809 | 69668 | 59716 | 72857 | 62762
5000000 | 95457 | 78758 | 68750 | 87395 | 74923 | 91400 | 78749
6000000 | 114795 | 94759 | 82717 | 105141 | 90127 | 109927 | 94745
7000000 | 134153 | 110762 | 96688 | 122842 | 105341 | 128500 | 110701
8000000 | 153513 | 126747 | 110671 | 140621 | 120560 | 147045 | 126696
9000000 | 172874 | 142740 | 124665 | 158317 | 135777 | 165586 | 142702
10000000 | 192204 | 158721 | 138588 | 176054 | 151004 | 184164 | 158686

% Save 17.53 28.02 8.47 21.57 4.26 17.53
a=0.5
250000
200000
g ,45222222 -
© — = =
5 150000 B=2y=0
2
£ 100000 e— (3=2.5 y=0
=}
z = —R=2.5y=1
50000 e 3=3 y=0
B=3y=1
0
0 2000000 4000000 6000000 8000000 10000000
Number of Written Pages

0=0.625 | PB=1 B=2 B=2.5 B=3
y=0 y=1 y=0 y=1 y=0 y=1
1000000 | 22059 | 20622 | 16213 | 21928 | 17694 | 22061 | 18505
2000000 | 45996 | 43146 | 33911 | 45704 | 36970 | 45983 | 38622
3000000 | 69912 | 65595 | 51600 | 69552 | 56230 | 69899 | 58712
4000000 | 93825 | 88144 | 69281 | 93367 | 75520 | 93838 | 78835
5000000 | 117731 | 110649 | 86958 | 117125 | 94819 | 117778 | 98949
6000000 | 141631 | 133131 | 104676 | 140953 | 114071 | 141647 | 119033
7000000 | 165534 | 155614 | 122338 | 164739 | 133337 | 165540 | 139169
8000000 | 189450 | 178068 | 140094 | 188553 | 152632 | 189465 | 159288
9000000 | 213332 | 200538 | 157751 | 212337 | 171844 | 213407 | 179362
10000000 | 237277 | 223076 | 175442 | 236147 | 191192 | 237241 | 199521
% save 6.09 26.16 0.51 19.52 0.00 15.97
a=0.625
250000
200000
-
£ 150000 ——B=2y=0
"g' ——B=2y=1
[}
€ 100000 e B=2.5 y=0
2 e B=2.5 y=1
50000 e B=3 y=0
B=3y=1

0

2000000 4000000 6000000 8000000 10000000
Number of Written Pages

a=0.75 B=1 B=2 B=2.5 B=3
y=0 y=1 y=0 y=1 y=0 y=1
1000000 | 30331 | 30267 | 22722 | 30302 | 24775 | 30316 | 26081
2000000 | 63782 | 63705 | 47825 | 63742 | 52136 | 63790 | 54960
3000000 | 97209 | 97157 | 72943 | 97161 | 79532 | 97241 | 83841
4000000 | 130721 | 130665 | 98074 | 130630 | 106941 | 130672 | 112724
5000000 | 164098 | 164069 | 123223 | 164145 | 134253 | 164079 | 141568
6000000 | 197567 | 197644 | 148368 | 197472 | 161701 | 197599 | 170411
7000000 | 230992 | 231084 | 173462 | 230980 | 189067 | 231018 | 199328
8000000 | 264368 | 264433 | 198592 | 264359 | 216477 | 264460 | 228191
9000000 | 297862 | 297888 | 223669 | 297789 | 243872 | 297884 | 257079
10000000 | 331390 | 331343 | 248865 | 331263 | 271395 | 331285 | 285953
% save 0.03 | 2495 | 004 | 1818 | 0.00 | 13.76
a=0.75
350000
300000 //
,, 250000 —p=1
8 /
§ 200000 B=2y=0
5 / ——B=2y-1
é 150000 /// = p=2.5y=0
-
< 100000 e 22,5 y=1
e B=3 y=0

50000

G

0

2000000 4000000 6000000 8000000 10000000
Number of Written Pages

a=0.875

g=1

B

=2

B:

2.5

B

=3

y=0

y=1

y=0

y=1

y=0

y=1

1000000

53757

53746

41002

53722

45186

53788

47414

2000000

115539

115523

88273

115565

97374

115520

102310

3000000

177304

177308

135371

177083

149574

177218

156984

4000000

238878

238846

182553

238851

201674

239172

211824

5000000

300838

300551

229632

300435

253888

300744

266435

6000000

362588

362387

276804

362299

306141

362329

321355

7000000

424407

424110

323806

424084

358265

424109

376102

8000000

485934

486016

371070

485690

410406

485844

430882

9000000

547765

547787

418216

547541

462581

547834

485655

10000000

609749

609433

465458

609264

514884

609410

540527

% save

0.03

23.65

0.06

15.63

0.01

11.42

700000

600000

500000

400000

300000

Number of Erases

200000

100000

a=0.875

s

s

7
=z

G

0

2000000 4000000 6000000 8000000 10000000
Number of Written Pages

Finally, the results of this algorithm with a factor for =2 and different values of a,y:

Number of Erases

700000

600000

500000

400000

300000

200000

100000

B=2

r
N

a=0.5 y=0

a=0.5y=1

a=0.625 y=0

a=0.625 y=1

a=0.75 y=0

a=0.75y=1

a=0.875 y=0
a=0.875 y=1

~_—

oS
I ——

\ //,

0.50 0.60 0.70 0.80 090 1.00 1.10 120 130 140 150 160 1.70 1.80 1.90 2.00
Factor

